The Crucial Role of the S1/T2/T1 Intersection in the Relaxation Dynamics of Aromatic Carbonyl Compounds upon n→π* Excitation

ChemPhysChem ◽  
2002 ◽  
Vol 3 (10) ◽  
pp. 889-892 ◽  
Author(s):  
Wei-Hai Fang ◽  
David Lee Phillips
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Yang ◽  
Ivan Yu. Chernyshov ◽  
Robin K. A. van Schendel ◽  
Manuela Weber ◽  
Christian Müller ◽  
...  

AbstractAny catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.


2001 ◽  
Vol 79 (5-6) ◽  
pp. 1002-1011 ◽  
Author(s):  
Charles P Casey ◽  
Steven W Singer ◽  
Douglas R Powell

Addition of excess HCO2H to {2,5-Ph2-3,4-Tol2(η5-C4CO)]Ru(CO)2}2 (6) at -20°C led to the formation of [2,5-Ph2-3,4-Tol2(η5-C4COH)]Ru(CO)2(η1-OCHO) (5), a proposed intermediate in catalytic transfer hydrogenations developed by Shvo. Hydroxycyclopentadienyl formate 5 undergoes rapid reversible dissociation of HCO2H at –20°C, and undergoes decarboxylation at 1°C to form a 1:10 mixture of {[2,5-Ph2-3,4-Tol2(η5-C4CO)]2H}Ru2(CO)4(µ-H) (3):[2,5-Ph2-3,4-Tol2(η5-C4COH)Ru(CO)2H] (4). 5 does not reduce PhCHO below the temperature at which 5 is converted to hydride 4. The catalytic production of benzyl alcohol from 5 and PhCHO in the presence of excess HCO2H is not accelerated by higher concentrations of PhCHO, indicating that 5 does not directly reduce PhCHO. Formate complex 5 is the precursor of hydride 4 which transfers hydrogen to PhCHO. A crucial role for the CpOH proton in the decarboxylation of 5 was indicated by the much slower decarboxylation of the methoxycyclopentadienyl analog [2,5-Ph2-3,4-Tol2(η5-C4COCH3)]Ru(CO)2(η1-OCHO) (7). A mechanism for decarboxylation of 5 is proposed which involves reversible dissociation of formic acid to form the unsaturated dienone dicarbonyl ruthenium intermediate C, followed by simultaneous transfer of hydride to ruthenium from the formic acid carbon and of proton to the carbonyl of C from the formic acid OH group.Key words: Shvo catalyst, ruthenium formate, decarboxylation.


2014 ◽  
Vol 10 ◽  
pp. 425-431 ◽  
Author(s):  
Antoine Pignon ◽  
Erwan Le Gall ◽  
Thierry Martens

The synthesis of (diarylmethyl)sulfonamides and related compounds by a new manganese-mediated, cobalt-catalyzed three-component reaction between sulfonamides, carbonyl compounds and organic bromides is described. This organometallic Mannich-like process allows the formation of the coupling products within minutes at room temperature. A possible mechanism, emphasizing the crucial role of manganese is proposed.


2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-47-Pr11-52
Author(s):  
V. M. Pan ◽  
V. S. Flis ◽  
V. A. Komashko ◽  
O. G. Plys ◽  
C. G. Tretiatchenko ◽  
...  

2019 ◽  
Author(s):  
Swaraj Sengupta ◽  
Sahanwaj Khan ◽  
Shyamal K. Chattopadhyay ◽  
Indrani Banerjee ◽  
Tarun K. Panda ◽  
...  

Synthesis and characterisation of one trinuclear copper complex, ([Cu<sub>3</sub>L<sub>3</sub>O]ClO<sub>4</sub>) (<b>1</b>) and one nickel complex ([Ni(L'H)<sub>2</sub>(dmso)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>) (<b>2</b>) with Schiff base ligands: (3Z)-3-((Z)-(1-(thiophen-2-yl)ethylidene)hydrazono)butan-2-one oxime (LH) and 1-(pyridin-2-yl)ethylidene)hydrazono)butan-2-one oxime (L<sup>'</sup>H). <b>1</b> shows high catecholase activity and has also been tested as a catalyst for the synthesis of benzylimine. <b>2 </b> shows phenoxazinone synthase activity.


Jurnal Akta ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 463
Author(s):  
Muslim Ansori ◽  
Akhmad Khisni

With the enactment of the Education System Act no 20 of 2003 (better known as the Sisdiknas Act), the State has determined that educational institutions should have a legal umbrella in the form of a legal entity, or better known as the Legal Entity Education. As a non-profit organization, the Foundation is the right legal entity that becomes a place for educational institutions, especially private schools. Therefore, of course, Notary has a very crucial role in making notary deed in the form of establishment and deed of change, such as example how in making the right basic budget and not multi interpresatasi for stake holders in the foundation. Therefore, the role of function and authority of the organ of the foundation must be clearly stated in the articles of association, so as not to cause a dispute in the future.KEYWORDS: Notaries, Foundation, Organ Foundation,


Sign in / Sign up

Export Citation Format

Share Document